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Abstract
A recent method to obtain short-time propagators for finding path-integral
solutions of Fokker–Planck equations is applied here to numerically solve the
non-linear kinetic Fokker–Planck equation in plasma physics. Furthermore,
we extend the use of this method to solve non-homogeneous equations.
Cylindrical geometry in velocity space is used and two-species plasma
is considered with no linearization of the exact conservative collisional
operator. Numerical singularities in the diffusion tensor determinant are
avoided by the splitting of the collisional operator into two parts, each one
leading to different multiplicative integral operators which describe electron–
electron and electron–ion interactions separately. The accurate advancing
path-integral numerical formalism preserves conservative physical properties
making this procedure a promising alternative to the classical linearized
collisional operators used in kinetic theory. Here, we show the feasibility
of the method by giving a new calculation of Spitzer’s transport coefficients.

PACS numbers: 02.70.Rw, 52.65.Ff, 31.15.Kb, 52.20.−j, 51.10.+y, 02.70.Rr

1. Introduction

For the last two decades, numerical evaluation of path-integral solution for the Fokker–Planck
equation (FPE) [1] has attracted much interest, see for instance the early works in [2–5]. The
main difficulty found in achieving a good approximate solution for a non-analytically solvable
equation is to provide an accurate short-time propagator which would properly substitute the
unknown exact one, also called the Green’s function. Among a great variety of physical
problems described by Fokker–Planck equations, special interest has been devoted to the one
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arising in plasma physics since it is an important tool to describe the collisional interaction
among several species of charged particles. In recent times, computational approaches have
been used to obtain the physical results in plasmas using the Fokker–Planck approximation to
the full collisional Boltzmann operator, see for instance [6, 7]. Some of these computational
efforts have followed similar approximations to those established in the analytical linearized
method [8–11], but such a limitation is, by no means, necessary.

However, here we provide an alternative integral non-linear conservative and entropic
propagator that avoids the usual recourse of using linearization of the collision operator and
multipole Legendre expansions for small perturbations of the distribution function f . When
using the integral method, not only no information is lost throughout the iteration process, but
also, if the short-time propagator is properly derived, the distribution function tails physically
behave remaining positive at any time.

We have applied the path-integral numerical computation before, when solving some
simple problems related to the Fokker–Planck conservative collision operators which arise
in plasma physics in spherical and cylindrical symmetries when only the electron–electron
collision term is considered [12–14]. As shown in these two works, and due to the non-unique
nature of the short-time propagators, second-order time corrections may be imposed in the time
advance scheme to preserve, not only the positiveness and norm of the distribution function,
but also the system momentum and energy for any number of iterations.

The integral method has been proved to be an efficient alternative to traditional numerical
procedures, such as those based on particle simulations or finite-difference schemes. In
kinetic problems, other procedures, such as Monte Carlo method or particle-in-cell, as well
as the finite-difference codes, are clearly limited by the general structure of the collisional
theoretical operator, which has to be simplified in order to construct an efficient algorithm. In
this sense, integral operators open very interesting possibilities in kinetic calculations without
the well-known limitations found in the usual methods. These procedures substitute the
collisional operators by new approximated ones [15, 16], such as the so-called called Enskog–
Chapman–Braginskii method. However, such approaches are burdened with the unavoidable
limitation to very small deviations from thermodynamic equilibrium. In fact, when the terms
driving the system away from equilibrium (as an external field) are not vanishingly small,
the distribution functions develop unphysical negative tails in velocity space. Obviously, this
unphysical behaviour drastically distorts the description of the system, making unfeasible
many calculations of the so-called transport coefficients [17, 18], where a population of
high-energy particles might be responsible for the global behaviour of the system.

In a previous paper [19], we extended a well-known procedure to calculate short-time
propagators to provide a simple general method to obtain suitable Green’s functions to
numerically compute the path-integral solution for any homogeneous FPE. In the present
paper, we tackle the problems related to the use and derivation of short-time propagators in
cases of physical interest at the same time as we extend the method to solve non-homogeneous
equations when source terms are present. We deal here with a two-species plasma where light
charged particles interact with massive ones at rest. A short time integral collisional operator is,
then, given for a generalized collisional Fokker–Planck integral–differential operator derived
from interaction potentials depending on an inverse integer power of the distance.

We provide for this case a general integral operator by splitting the original collisional
term into different parts, each one describing the interaction between particles of a given
species with others. This procedure is thus quite general and it is demonstrated to avoid
possible singularities that can appear since usual Gaussian short-time propagators for FPE are
used when a singular diffusion tensor exits. This is the case found if the method is applied to
the physically realistic case of interacting particles through binary Coulombian collisions.
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We give two applications in order to check the validity of our integral operators. The
method is, firstly, tested for the case of Maxwellian hard spheres, which can be analytically
solved providing exact relaxation times for temperature isotropization. In the last section,
we apply our non-linear collisional propagator to the realistic case of unmagnetized neutral
plasmas to reproduce Spitzer’s transport coefficients [17, 18, 20] obtained by adding a source
term to the original FPE. This fact shows that the approximate Green’s functions given here,
can be applied to a more complicated situations in plasma physics, if the diffusion coefficients
of the original FPE are properly replaced for the actual ones.

2. Fokker–Planck–Landau equation and collision operators

In this paper, we deal with a non-homogeneous Fokker–Planck equation having the general
form
∂f

∂t
= LFP(q, t)f (q, t) + ρ(q, t) = − ∂

∂qi

[
Ai (q, t) − ∂

∂qj

Dij (q, t)

]
+ ρ(q, t) (1)

for the evolution of a physical distribution function f (q, t), where q represents the six
components of the vector {r, v} for a point in the phase space. The additional term ρ takes
into account the possible existence of spatial and time dependent sources. The components
Ai of the drift vector A, as well as the diffusion tensor elements Dij and ρ, may also be highly
non-linear functions depending on distribution f . In this case, we shall refer to the above
equation as a non-linear FPE. As usual, we mean by ‘diffusion coefficients’ both vector A and
tensor D components. The above FPE could be solved if a propagator �(q, t | q′, t ′) were
known. Any distribution function f (q, t) could be advanced in time through the time integral
evolution equation

f (q, t) =
∫

f (q′, t ′)�(q, t | q′, t ′) dq′ +
∫

dq′
∫ t

t ′
ρ(q′, τ )�(q, t | q′, τ )dτ , (2)

which is equivalent to the differential equation. The probabilistic meaning of this integral
equation is clear, since � could be understood as a transition probability form point q′ at time
t ′ to point q at time t. Obviously, the task of finding an exact solution for the propagator � is,
at least, as difficult as to solve the original equation. Usually, only approximate propagators
can be found in the short-time regime of the evolution. A well-known short-time propagator
Pτ = Pτ (q, q′|t) for the transition from time t ′ = t to time t + τ is the Gaussian distribution
[1], which in an N-dimensional space reads

�(q, t + τ ; q′, t) ≈ Pτ = 1

‖D′‖1/2(4πτ)N/2

× exp

[
−D′−1

ij (qi − q ′
i − A′

iτ )(qj − q ′
j − A′

j τ )

4τ

]
. (3)

Here, primes indicate that the corresponding functions have to be evaluated in source points q′

instead of being computed at field points q, so that B′ means B(q′, t). It is worth mentioning
here that (3) obviously demands the diffusion tensor to satisfy ‖D′‖ �= 0. Anyway, for a
given FPE it would be convenient to derive a consistent short-time propagator after a previous
inspection of the relevant properties of the differential operator. This can be made in several
ways, as we pointed out in [19] where we provided a simple tool to achieve this task.

The non-linear FPE arising in plasma physics to describe the motion of the single-particle
distribution function fa(r, v, t) for species of kind a, reads

d

dt
fa − ρa = − ∂

∂vi

[
Da

i − ∂

∂vj

Da
ij

]
fa, (4)
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where the co-moving derivative in phase space d/dt = ∂/∂t + v ·∂/∂r+ F/ma ·∂/∂v is usually
replaced by ∂/∂t for spatially homogeneous force-free problems, when the deterministic forces
F = F(r, v, t) vanish. The right-hand side of (4) is known as the collisional operator, because it
describes the effect of collisions between charged particles of species a and particles of several
species b under a given potential interaction. Though the coefficients D may be non-linear
functions of f, one can observe that this equation coincides with (1), by simply identifying these
diffusion coefficients with the corresponding ones in (4). Note that in the previous equation
each Da

i,j coincides only with Dvi ,vj
for i, j = x, y, z, being Dxi ,vj

= 0 and Dxi ,xj
= 0 in the

six-dimensional phase space, while, for instance, Ari
= vi and Avi

= Da
i + Fi/ma . Note as

well that the second rank 6 × 6 tensor Dr,v is then singular and (3) would no longer be valid
as a short-time propagator.

For a better understanding of the non-linear nature of the actual problem, let us consider
the Fokker–Planck equation in velocity space, with natural boundary conditions at infinity, in
the Landau form [21]

∂fa

∂t
=

∑
b

1

8

∂

∂vi

{∫
dv′uσ(u)(u2δij − uiuj ) ×

(
∂

∂vj

− ∂

∂v′
j

)
fa(v, t)fb(v′, t)

}
, (5)

where u = v − v′ is the relative velocity between a test particle of species a and charged
particles of species b, being u = |u|. Here, σ(u) is a cross section related to momentum
transfer, which is expressible in terms of the scattering cross section σs(u, θ) as σ(u) =
1
2

∫
dφ d(cos θ)(1 − cos2 θ)σs(u, θ). For a general potential interaction V (r) = kr−n, σ

behaves as u−4/n. The drift and diffusion coefficients Di and Dij in (4) may be easily
identified from the above equation, by suitable decomposition of the integral kernel in (5) after
having integrated by parts. Each one of these terms are given as a convolution integral in the
form D(v, t) = ∫

d(u)f (v′, t) dv, being d any of the kernels

d
a/b

i (u) = −
(

1 +
ma

mb

)
la/b

4π
u

ui

u4/n
and d

a/b

ij (u) = la/b

8π
u

δiju
2 − uiuj

u4/n
, (6)

where la/b is usually a constant. The resulting FPE provides the differential collisional
conservative plasma operator LFP. For our present aims, it is enough to consider space
homogeneous situations for which the distribution function fa for the species a depends
only on velocity and time. Additional terms, such as ρ, can be treated in a straightforward
manner.

From above expressions, all the diffusion coefficients are given as a sum of all
contributions, due to interaction of particles of kind b with a test particle of species a as
Da(v, t) = ∑

b Da/b(v, t), where D can be any component of the vector Da
i and the second

rank tensor Da
ij . Pay special attention to the fact that due to Da/a , this sum also includes the

self-interaction collisional contribution.
To analyse the transport coefficients in a plasma, when the system comes to the stationary

state, it is convenient to discuss the evolution of the physically relevant distribution moments.
For any FPE having the form given in (1), the time evolution of the average quantity
〈g(v)〉 = ∫

gf dv is given by

˙〈g〉 =
〈
Ai

∂g

∂vi

+ Dij

∂2g

∂vi∂vj

〉
+

∫
gρ dv. (7)

In our problem, we are interested in three values for g, namely g = 1, g = v and g = mav
2/2

for norm, momentum and kinetic energy transfer rates for each species.
The numerical advancing method using (2) might almost be trivially applied to the case

of Cartesian coordinates, if the simplest Gaussian propagator (3) were valid. Yet in practice,
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the amount of numerical work happens to be so large in three dimensions as to render this
possibility useless. If we consider the local plasma behaviour in the presence of an electric
field E, the relevant geometry in plasma physics applications will be that of axial symmetry
introduced by the field. Therefore, one should use the appropriate propagator in this cylindrical
geometry. The intractable expression (3) depending on three velocity components is simplified
to another one, depending only on the two relevant independent axial and radial components
v‖ = vz and v2

⊥ = v2
x + v2

y. The FPE (4) is transformed into (dropping the species superscripts
and sources)

∂F

∂t
= − ∂

∂v⊥

[
D∗

⊥ − ∂

∂v‖
D⊥‖ − ∂

∂v⊥
D⊥⊥

]
F(v⊥, v‖; t)

− ∂

∂v‖

[
D‖ − ∂

∂v⊥
D⊥‖ − ∂

∂v‖
D‖‖

]
F(v⊥, v‖; t) (8)

for the new function F = 2πv⊥f (v⊥, v‖; t).

The cylindrical coordinates (v⊥, v‖, φ) are defined in terms of the spherical coordinates
(v, θ, φ) as v⊥ = v sin θ , and v‖ = v cos θ. In this equation, we have defined the perpendicular
effective drift for F as D∗

⊥ = Dφφ/v⊥ + D⊥. If an external velocity independent force F is
present, it should be added to the drift vector De/e. As usual, if the parallel direction is taken
along the field F,D

e/e
‖ has to be changed into D‖ + F/m.

For the special case of Coulomb collisions, we have n = 1 and from (6), the coefficients
D are directly related to the Trubnikov’s Rosenbluth-like potentials [22]

ψb(v, t) = − 1

8π

∫
|v − v′|fb(v′; t) dv′, ϕb(v, t) = − 1

4π

∫
1

|v − v′|fb(v, t) dv′, (9)

as

De/b
α = −Le/b

(
1 +

m

mb

)
∂ϕb

∂vα

, D
e/b
αβ = −Le/b ∂

∂vα

∂ψb

∂vβ

,

D
e/b
φφ = −Le/b 1

v⊥

∂ψb

∂v⊥
, α, β =⊥, ‖

(10)

for electron test particle (a = e) in a medium of particles of species b named ions (b = i). In
standard notation, we have Le/e = (4πe2/m)2λ = Le/b/Z2, where m is the electron mass, e
is the electron charge, Z is the relative ion charge and λ is the Coulomb logarithm [22]. From
(7), the mean rates of momentum and energy transfer [23] to the electron species e can be
expressed as

m
d

dt
〈v‖〉 =

〈
D

e/i
‖ +

F

m

〉
and

m

2

d

dt
〈v2〉 = m

〈
v‖

[
D

e/i
‖ +

F

m

]〉
. (11)

Finally, a system of physical units can be defined for any FPE in Landau form, to get
dimensionless magnitudes. For the case of Coulomb binary interaction, such dimensionless
form is achieved using the following set of Gaussian units for velocity and time:

v0 =
√

kT0

m
, t0 = v3

0

neLe/e
=

√
m(kT0)

3/2

16π2e4λne
, (12)

where k is the Boltzmann constant and T0 is the system kinetic energy at time t = 0.

3. Short-time propagators for Fokker–Planck–Landau equation

We focus attention here on a FPE in the form of (4), for electrons (particles of species a = e)
in a medium of a single kind of massive ions at rest (species b = i). The approximate
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Green’s function Pτ (q, q′|t), Pτ (q, q′) in the following, is closely related to the unknown
�(q, t + τ | q′, t) by means of the formal equation Pτ = {1 + τLFP +O(τ 2)}δ(q−q′), derived
from the Taylor expansion of � in powers of τ = t − t ′ > 0 with �(q, t | q′, t) = δ(q − q′)
[1]. This relation, up to second order in τ , can also be expressed as

�(q, t + τ |q′, t) 
 Pτ = eτLFP(q,t)δ(q − q′). (13)

If we now use for the δ function the Fourier representation which corresponds to infinite
boundaries, we arrive at the Gaussian expression (3) and then, (2) provides an integral
representation of the FPE.

To derive an integral operator, we proceed following the method established in [19].
Roughly speaking, such derivation uses the already quoted symbolic property of the Dirac δ

function G(v)δ(v − v′) = G1(v′)G2(v)δ(v − v′) defining, among many other possibilities,
the functions G1 and G2, such as G(v) = G1(v)G2(v). For a suitable decomposition of any
function G (here Dα and/or Dαβ), one can define a new operator = L∗

FP(v, v′) and construct a
solvable auxiliary homogeneous FPE for Pτ as ∂Pτ /∂τ = L∗

FPPτ [14, 19]. If we define new
drift coefficients A for the homogeneous FPE (9) through the relations

Dφφ

v⊥
+ D⊥ = D⊥⊥

v⊥
+ A⊥ and D‖ = D⊥‖

v⊥
+ A‖, (14)

from the formal solution (13), we obtain the auxiliary problem (including a parallel force)

∂Pτ

∂τ
= − ∂

∂v⊥

[
D′

⊥⊥
v⊥

+ A′
⊥ − ∂

∂v‖
D′

⊥‖ − ∂

∂v⊥
D′

⊥⊥

]
Pτ

− ∂

∂v‖

[
D′

⊥‖
v⊥

+ A′
‖ +

F

m
− ∂

∂v⊥
D′

⊥‖ − ∂

∂v‖
D′

‖‖

]
Pτ (15)

that also defines a new operator L∗
FP(v, v′), where the variables v′ are now understood as

constant parameters. This equation is exactly solvable when primed functions are treated as
fixed parameters, giving an integral short-time propagator Pτ (v, v′|t), for F, as

Pτ = v⊥
2τ

√
4πD′

⊥⊥τD′
t

exp

(
−D′

‖‖U
2 − 2D′

⊥‖UV + D′
⊥⊥V 2

4τD′
t

)
i0

(
2v⊥(v′

⊥ + A′
⊥τ)

4D′
⊥⊥τ

)
, (16)

where U = v⊥−v′
⊥−A′

⊥τ and V = v‖−v′
‖−A′

‖τ −Fτ/m. Here, Dt denotes the determinant
of the 2 × 2 non-singular cylindrical diffusion matrix. Primes indicate that the coefficients
have to be computed in the source variables v′ in time t. The function i0 is expressed in terms
of the zero-order Bessel function I0 as i0(q) = I0(q) exp(−q). Observe that Pτ behaves as
a Gaussian far from the origin, making the advancing scheme to be coherent with entropic
increase at each time step τ .

The effective new drift coefficients Aα behave in the same way as the original ones
Dα, as functions of velocity components, being both ratios Aα/Dα smooth non-vanishing
bounded functions. We stress that the new functions A lead to a formally different Fokker–
Planck equation which is, however, identical to the original (9) and whose solution for short
τ involves only the zero-order Bessel function I0 instead of that with variable order Iν [24].
This can be easily shown by noting that the dependence of Pτ on v⊥ comes from the solution
of the auxiliary equation

∂P (v⊥)

∂τ
= − ∂

∂v⊥

[
D′

φφ

v⊥
− ∂

∂v⊥
D′

⊥⊥

]
P(v⊥), (17)

when solved for small v⊥ under reflecting boundary conditions at the origin, giving

P(v⊥) = v⊥
2τ

√
D′

⊥⊥

[
v⊥
v′

⊥

]ν

Iν

[
v⊥v′

⊥
2D′

⊥⊥τ

]
exp

[
−v2

⊥ + v2′
⊥

4D′
⊥⊥τ

]
. (18)
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Here, the variable order ν = (D′
φφ/D′

⊥⊥ − 1)/2 would make the numerical evaluation of Pτ

rather cumbersome, unless Dφφ coincides with D⊥⊥ which is the case if the coefficients A

are used instead of the original drift ones. The above integral propagator has already been
used in [14], and its excellent computational properties have been checked when no local
inhomogeneities exist and no external fields are introduced. It is worth mentioning here that,
if the Gaussian (3) is used instead of (16), after rewriting it in cylindrical coordinates, an
infinite series of Bessel functions appears when the integration on φ is performed. This fact
would make the resulting propagator almost useless for numerical purposes.

To solve numerically (5), one can use (2) with (16), after having computed the diffusion
coefficients for species e. Nevertheless, when we deal with massive δ-distributed ions at
rest, some kind of singularities appear. By noting that the diffusion e/i tensor is a singular
matrix, the usual Fokker–Planck propagator (16) might not work properly for this problem.
For instance, in the plasma case for the Coulombian potential, the problem is that some of the
physical functions, such as the matrix tensor determinant ‖De/e + De/i‖ and drift vector A (or
D) are, respectively, proportional to 1/v and v/v3 for small v. These singularities, which are
related to the elastic nature of the e/i collisions, make the numerical propagator values to get
worse at refined grids. Therefore, it is appropriate here to deal with a more general way to
find an integral solution of plasma FPE. This issue can be made by treating each contribution
to the collisional term as if it were alone, before dealing with all of them as a whole.

The procedure to split the global integral operator can be easily understood if we rewrite
(4) as

∂fe

∂t
= ρ(v, t)

[
Le/e

FP + Le/i
FP

]
fe + ρ(v, t) = LFPfe(v, t) + ρ(v, t), (19)

from which (13) takes the following form:

� ≈ Pτ = exp
[
τ
(
Le/e

FP + Le/i
FP

)]
δ(v − v′) ≈ eτLe/e

FP
[
eτLe/i

FP δ(v − v′)
]
, (20)

meaning that the effect in advancing an impulsive Dirac delta distribution function in time by
means of both operators L, is equivalent to consecutively superpose the action of one of them
to the action of the other, as if they were independent. Here, by ρ we mean any source term
leading to change particle number in any phase space volume element. This term may also
be used to modelize spatial derivatives, if they are replaced by particle flux balances through
each small cell wall. Recalling now that, in general, exp[τLFP]δ(v − w) implicitly defines
a short-time propagator Pτ (v, w) with initial condition δ(v − w), and that exp[τLFP]H(v)

means
∫

PτH(w) dw, the definite propagator can now be written as Pτ = exp
[
τLe/e

FP

]
P i

τ . The
expression inside the brackets in (20) defines a short-time Green’s function P i

τ which takes
into account the effect of electron–ion interactions, whereas exp

[
τLe/e

FP

]
describes a short time

integral operator for electron–electron collisions. The integral form of Pτ can be finally given
as

Pτ (v, v′) =
∫

P e
τ (v, w)P i

τ (w, v′) dw. (21)

The functions Pτ can be computed one by one, following the procedure used before in (16) to
derive an auxiliary FPE with a new operator L∗

FP. If both functions Pτ are well behaved (as
real distribution functions), the integration over w variables does not need to be performed if
one proceeds as it follows. By multiplying both sides of this relation by fe(v′, t) and carrying
out the integration over primed variables, we conclude that the action of the integral operator
Pτ can be finally written as

fe(v, t + τ) =
∫

Pτ (v, v′)fe(v′, t) dv′ =
∫

P e
τ (v, w)f i

e(w) dw. (22)
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Here, the auxiliary function f i
e(w) is the result of advancing fe by means of the ‘ions collisional

operator’ P i
τ , this is to say f i

e(w) = ∫
P i

τ (w, w)fe(w, t) dw. The second integration involving
the electron propagator P e

τ takes account of the electron–electron interaction for which (16)
can be used. This fact led us to search for short-time propagators corresponding to the
differential operators Le/e

FP and Le/i
FP independently, when needed to avoid possible singularities.

Nevertheless, for any equation in the form (5), it is always possible to use (16) for P e
τ with the

self-interaction coefficients De/e since it is derived from Le/e
FP . The same can be said for P a

τ ,

for any species a, to describe the action of La/a

FP in a more general problem.
The function P i

τ (v, v′) represents the propagator associated with the plasma FPE without
electron–electron contribution, which can be solved analytically in velocity space for massive
ions at rest, having fi = niδ(v) as a distribution function. Here, the ion density ni equals
ne/Z for plasma neutrality. In this case, Le/i

FP only scatters electron velocity direction, not its
magnitude, and the Fokker–Planck equation for this operator is

∂f

∂t
= ni

Le/i

8πv3

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
f (v, θ), (23)

in terms of the angular spherical variable θ (see [22]). The corresponding equation for Green’s
function P i

τ can be solved by separation of variables with the initial δ condition in terms of
Legendre polynomials, giving

P i
τ = �e/i(v, t + τ | v′, t) = δ(v − v′)

2πv2

∞∑
k=0

(
k +

1

2

)
Pk(cos θ)Pk(cos θ ′) e−λkτ , (24)

which is exact for any τ. Here, v and v′ are absolute velocities and λk = niL
e/ik(k + 1)/8πv3.

The computation of the series involved in (24) may need a great number of terms for
small values of the exponential argument, increasing notably the computation time. To avoid
this problem, an approximate and very accurate formula can be used up to the same order in
τ which holds for P e

τ . If we define the standard series

Pβ(θ) = eβ

2

∞∑
k=0

(2k + 1) e−(2k+1)2βPk(cos θ)Pk(cos θ ′) (25)

for an arbitrary positive parameter β, after using integral representations for the Legendre
polynomials [25], we find the approximate formula

Pβ 
 e1/2β

2β(e1/β − 1)
ecos θ cos θ ′/2βI0

(
sin θ sin θ ′

2β

)
, (26)

where I0 stands for the Bessel function of order 0 with purely imaginary argument. Although
this expression provides an approximation for small values of β, it is easy to verify that in the
limit of large β it approaches the correct asymptotic limit for the series. For this reason, one
expects (26) to be quite close to the exact series for all values of time step τ.

With P e
τ and P i

τ , the function fe can be advanced in time, by means of successive
applications of both short-time propagators. As P i

τ given by (24) is exact, the order of
integration can be changed, in spite of the fact that the integral operators, as well as the
differential ones LFP, do not commute.

To end this section, we will mention once again two facts: the propagators obtained
here are only valid in the regime of short time evolution and their forms are non-unique
[26, 27]. For this reason, further corrections in order τ 2 (or lower) can be introduced during
the computation, resulting in a new expression for Pτ . This can be achieved having in
mind that the contribution of the e/e operator should not modify the electron momentum and
energy. Since Pτ is a time-dependent function, it may be changed using a fit parameter εn

that minimizes the difference between numerical electron energy Tn (at time tn = nτ ) and its
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previous value Tn−1. This parameter has to be recursively calculated before applying P i
τ at

each time step. When the time-dependent coefficients A
e/e
‖ are replaced by A

e/e
‖ (1+εn(τ )) with

εn = εn−1 + κ(Tn − Tn−1)(κ �= 0, ε0 = 0), (27)

the correct behaviour of all physical moments is observed after a series of small oscillations of
T, as shown in the figures. It must be remarked that this substitution does not modify positivity,
number and momentum evolution. It just restores the physically predicted behaviour for the
second-order moment of the electron distribution 〈v2〉, which should not change at each time
step when only the self-interacting collision operator acts.

4. Application to Maxwell’s hard spheres’ potential FPE

The validity of integral propagators obtained for the advancing scheme (22) can be checked by
solving a Fokker–Planck equation, having the same conservative properties as those found in
the realistic plasma physics collision operator. Now we will be concerned with the so-called
Maxwell’s molecule potential V = kr−4, to compute σ(u) in (5) that provides the coefficients

D
e/b
i = −2

(
1 +

me

mb

)∫
(vi − v′

i )f
b(v′, t) dv′ (28)

and

D
e/b
ij =

∫
(δiju

2 − uiuj )f
b(v′, t) dv′ (29)

in arbitrary units. Note that the integrals appearing above can be given in terms of the
distribution moments. In particular, if the mean 〈v‖〉 = 0 for massive ion particles b = i with
relative charge Z and distribution fi = Zδ(v), we have, for density n = 1,

D⊥ = −4v⊥(1 + Z/2), D‖ = −4v‖(1 + Z/2), D⊥‖ = −(1 + Z)v‖v⊥,

D⊥⊥ = T⊥ + T‖ + v2
‖(1 + Z), D‖‖ = 2T⊥ + v2

⊥(1 + Z), Dφφ = D⊥⊥ + D‖‖ − 2T⊥,

(30)

where T⊥ and T‖ are the anisotropic temperatures T⊥ = 1/2
〈
v2

⊥
〉

and T‖ = 〈
v2

‖
〉
. The effective

drift coefficients Aα are proportional to Dα . It is clear that any initial anisotropic distribution
function fe(v, 0) must gradually be transformed into a Maxwellian f0(v) having T⊥ = T‖ = T ,
not only for this example but also for all the wide classes of equations depicted by (5). Here,
the rate of change of the difference � = T⊥ − T‖ can be given explicitly as

d�

dt
= −�

τr
= −12

(
1 +

Z

2

)
�, (31)

defining the relaxation time τr = 1/(12 + 6Z).

Using these relations, it is possible to analyse the validity of the results contained in
section 3. As no singularities are present now, the combined e/e and e/i collisional effects can
be simultaneously treated with (16) computing the coefficients D = De/e+De/i. Otherwise, the
split operator (22) should be equivalent to advance in time fe. These features can be checked
by computing in both schemes both τr values, and comparing them with their analytical
exact value. To solve the problem by splitting the short-time transition probability, the ion
contribution to Pτ is given by (24) when λk is replaced by Zk(k + 1). We stress, once again,
that P i

τ is exact and its approximate sum works as being exact too. The integral propagator
P e

τ has the form of (16), for Z = 0 in the previous coefficients to keep only e/e contributions.
In both advancing schemes analysed here, the time step τ may be relatively larger than the

reasonable values that can be taken in a finite-difference advancing scheme. In fact, for both
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Figure 1. Time evolution of log |T⊥ − T‖| = log |�| (dots) for the problem treated in section 4,
using the split propagator (a) and the full propagator (b) where line means analytical solution. The
time step is τr/10 with Z = 1 in a 35 × 50 grid. The evolution of T⊥ and T‖ and the entropy
increase are plotted in (c) and (d) for 150 iterations. Initial (histogram-type) fe(v, 0) in frames (e)
and surfaces and contour lines for steady state fs(v) in (f) and (g).

solutions, τ is about a 10–20% of the theoretical (or previously predicted) relaxation time τr.

For any initial condition fe(v, 0), a numerical Maxwellian isotropic distribution is obtained
with almost no difference between both methods. The behaviour of the temperature gap �

agrees with the predicted exponential decay even for large values of the time step τ (a half
of τr). The solution given by the split propagator is more accurate than that provided by the
compact form of Pτ described above. The time evolutions of � in both advancing schemes are
given in figure 1, where they may be compared with the analytical evolution while the initial
energy is kept constant using a small parameter εn, as given in (27). The expected entropy
increase is also observed when entropy is defined as usual S = − ∫

f log f dv.

5. Application to classical transport coefficients’ calculus

When an external force F is present and space inhomogeneities are introduced, (4) takes the
form

∂fe

∂t
+ v · ∂fe

∂r
+

F
me

· ∂fe

∂v
= Ce/e + Ce/i = C(fe, fe) = LFPfe, (32)
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where we have used a more standard notation (C) for the collision operators, assuming plasma
neutrality and massive ions at rest. We shall consider the computation of classical transport
coefficients when temperature gradients and electric field exist. In this case, we seek for a
non-homogeneous FPE to apply the integral numerical solution when ρ �= 0.

As it is well known [15, 17], the steady-state solution of (32) is usually carried out
assuming that the distribution function can be expressed as fe = f 0

e (v) + f 1
e (v, cos θ), where

f 0
e stands for the Maxwellian distribution, and f 1

e obeys

f 0
e

(
mv2

2kT
− 5

2

)
v
T

· ∂T

∂r
− f 0

e
e

kT
E · v = −K

(
f 1

e , f 0
e

) − K
(
f 0

e , f 1
e

) = −C lin (33)

in an inertial motionless reference system. In (33), K = −K
(
f 1

e , f 0
e

) − K
(
f 0

e , f 1
e

)
will

represent the linearized parts of the full collision operator, C, which we will call C lin for
simplicity. For those cases in which E and ∇T have the same space orientation, we may write
the equation in the classical form (33), also followed by Spitzer,

ρSPT = f 0
e

(
mv2

2kT
− 5

2

)
v‖
T

∂T

∂z
− f 0

e
q

kT
v‖E = −C lin

(
f 0

e , f 1
e

)
. (34)

In this well-known formulation of the non-homogeneous term, the temperature gradient factor
is fixed in such a way that the average particle flux of the electrons vanishes in the absence of
an electric field E.

To look for a physical test of our non-linear propagator, we will compare the result of (34)
with the case in which the collisional term is exactly evaluated instead of being approximated.
For very small values of the E and ∇T , the solutions of both equations should coincide.

A comparison between the linearized method and our exact calculation is better understood
if we consider (34) as the stationary limit of the following differential equation:

∂fe

∂t
= ρSPT + C lin

(
f 0

e , fe − f 0
e

)
. (35)

As already mentioned, the first step in developing a non-linear kinetic approach is to solve
the preceding equation with the same source term ρSPT = ρ (that includes E and ∇T ),
but substituting the linearized collision operator C lin for the non-linear collision operator
C(fe, fe) = LFPfe. When its time evolution comes to an end, our solution for fe should be
very close to the classical one obtained through a series expansion in Sonine polynomials [15].

We may now use (2) to approximate the non-homogeneous Fokker–Planck equation in
the limit of short time steps. The simplest scheme is provided by the advancing formula

fe(v, t + τ) =
∫

dv′[fe(v′, t) + τρ(v′, t)]Pτ (v, v′|t) (36)

for short τ time steps. From (7), we obtain for energy and rate momentum transfers

〈v̇‖〉 = 〈
D

e/e
‖ + D

e/i
‖

〉
+

∫
v‖ρ dv = −niL

e/i

4π

〈v‖
v3

〉
+

∫
v‖ρ dv, (37)

1

2
〈v̇2〉 = 1

2

∫
v2ρ dv with ṅ =

∫
ρ dv. (38)

In previous equations, use is made of average energy conservation in e/e and e/i collisions
for very heavy ions. The presence of E has been included in ρ = ρSPT instead of using
Di = D

e/e
i + D

e/i
i − qEi/m. Once the stationary state is reached,

∫
ρ dv3 = 0, (37) and (38)

give the relations∫
v‖ρ dv3 = −nZLe/e

4π

〈v‖
v3

〉
ST

and
1

2

∫
v2ρ dv = 0. (39)
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Figure 2. Normalized transport coefficients evolution for small fields E and |∇T |. The profiles for
our fe can be compared with Spitzer’s solution profiles fSPT. In both cases, negative distribution
tails appear for large |∇T | (here 0.01) because of the unphysical source ρSPT, but this effect is less
sharp for our integral solution. Time evolution for T⊥, T‖ and the form of the source term ρSPT in
(34) are also shown.

For Spitzer’s equation with no thermal gradient and ρ = ρSPT, as defined in (34), in the
stationary state the relations

−qEn

m
= nZLe/e

4π

〈v‖
v3

〉
,

1

2

∫
v2ρSPT dv = 0 and

qE

m
〈v‖〉 = 0 (40)

hold. This, however, implies 〈v‖〉 = 0 for t → ∞, an exact result which would seem to
contradict the coherence of the classical scheme if no thermal gradient is used to keep a null
current j = −ene〈v‖〉. In fact, its results would be just valid in the extreme zero field and zero
current case, whereas exact coincidence with Spitzer–Harm’s result is only achieved for very
weak fields, as expected.

Our analysis shows that in steady state ṅ = 0, ˙〈v‖〉 = 〈
D

e/i
‖ − qE/m

〉 = 0 and

1/2 ˙〈v2〉 = −qE/m〈v‖〉, which explains the progressive increase in energy of the system
with time, as observed in our results when the electric field is not low enough to make it
undetectable. This question will be further considered in the context of a fully non-linear
approach as a subject for future investigations.

We now proceed to describe the outcome of our analysis. For the sake of clarity, transport
coefficients are computed taking the corresponding Spitzer–Harm ones as units. We use the
same notation and definitions as in [17] to calculate the electric current and the heat flux as
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j = σE + α∇T and Q = −βE − κ∇T when a field or a temperature gradient is present in ρ.
We obtained full agreement within the expected computational errors.

Figure 2 shows the evolution of transport coefficients (first four frames) when the run is
started with a Maxwellian for fe at temperature T . For this case, a 35 × 50 grid was used and
250 time steps were sufficient to reach practical stationary state. The asymptotic or t250

∼= t∞
coefficients obtained were then 99 ± 2% of Spitzer’s, with no further appreciable change in
longer times.

In order to appreciate the time scale evolution, figure 2 also presents (seventh frame) a
run started with an asymmetric Maxwellian also at average temperature T, but with T‖ �= T⊥.
The temperature equilibration time, until a common temperature is reached for fe, provides
the time scale for steady state. This time slightly depends on the strength of the temperature
gradient and on the electric field magnitude, too.

Finally, figure 2 also illustrates the difference between the linearized and the exact
treatment of (32), in the case of large temperature gradients. This is not a realistic case
for the definition of transport coefficients, because of large negative tails in the distribution
function. It is interesting, however, that our solution, which uses no linearization of the
collision operator, tends to correct these unphysical negative values in a good direction. A full
correction, that is, absence of negative amplitudes, is only obtained with an exact flux-balance
definition of the source term ρ, but this is out of the scope of this work, being a subject for
future applications of our numerical integral method.
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